
Text Processing for Urdu TTS System

Rida Hijab Basit

Center for Language Engineering,

KICS-UET Lahore

rida.hijab@kics.edu.pk

Sarmad Hussain

Center for Language Engineering,

KICS-UET Lahore

sarmad.hussain@kics.edu.pk

Abstract

Natural Language Processing plays an important

role in any Text to Speech (TTS) system. The raw text

given as input to TTS may consist of numbers, dates,

time, acronyms or symbols. NLP processes the raw text

and converts it in the form that can be used by TTS to

generate its corresponding speech. NLP consists of

three parts; "Text Processing", "Text Annotation" and

"Phonological Annotation". This paper enhances

earlier work and details the text processing in NLP

from the perspective of Urdu and also reports the

results given by NLP.

1. Introduction

Text to Speech (TTS) system for any language

takes a sequence of words as input and converts it into

speech. The accuracy of TTS system lies in the

intelligibility and naturalness of the speech it produces.

Text to Speech system can be divided into three parts:

Natural Language Processing, Text Parameterization

and Speech Generation [1].

Natural Language Processing normalizes the raw

input text and converts it to its corresponding phonetic

transcription. Text Parameterization then uses this

phonetic transcription to generate certain numeric

parameters. Based on these parameters, Speech

Generation module synthesizes corresponding speech.

The raw text given as input to TTS system can be

of any form. It may consist of numbers, time, dates,

symbols and any miscellaneous characters. Therefore,

before converting it into speech it must be converted to

some form that can be spoken by the TTS system. For

this purpose, raw text first undergoes the process of

Natural Language Processing.

In the past, many researchers have proposed

different NLP frameworks for several languages. NLP

in some Romanian TTS has been divided into three

parts: text pre-processing, text normalization and

phonological processing [2]. It is capable of extracting

sentences, paragraphs, abbreviations, numerals, phone

numbers, time and punctuations. It then syllabifies and

marks stress positions on the words. NLP for many

English TTS also apply Part Of Speech (POS) tags to

the tokens [3, 4].

NLP for some Tamil TTS systems only handles

abbreviations, acronyms and numbers [5]. Numbers

include ordinary numbers, phone numbers, dates, time

and currency figures. It also handles some foreign

language words that the input text may encounter.

Text to Speech systems for Urdu also use NLP

before generating the digital speech signal. NLP can be

divided into three parts: Text Processing, Text

Annotation and Phonological Annotation. This paper

focuses on Text Processing and is an extension of work

done in [6].

The rest of the paper is structured as follows:

Section 2 describes the NLP architecture, Section 3

details the Text processing in NLP from the Urdu

language perspective, Section 4 reports the results and

Section 5 discusses the results whereas Section 6

concludes the paper.

2. NLP Architecture

Natural Language Processing can be divided into

three categories - Text Processing, Text Annotation

and Phonological Annotation, as mentioned in the

previous section. Text Processing converts the raw text

that may consist of numbers, dates, time or symbols

into a simple text string [1]. Text annotation adds

morphological, syntactic and semantic information to

the input text, for example, assigns a grammatical tag

to each word in a text string representing its Part of

Speech (POS).

Finally, this annotated string undergoes

phonological processing, which annotates further

information including phonetic transcription (either

through letter to sound rules [7] or looking-up

pronunciation lexicon), syllable, stress and intonation.

The high level architecture diagram for NLP is shown

in Figure 1.

The shaded portion in Figure 1 has been discussed

in detail in this paper.

3. Text Processing Module

Text Processing module takes raw input from the

user and converts it into normalized text. Raw input

may contain any form of the text. The input text

undergoes sentence segmentation as shown in Figure 1.

These segmented sentences are then converted to 8-

bit Urdu Zabta Takhti (UZT) [8] format for internal

processing.

 Text processing mainly consists of tokenization,

semantic tagging and text generation. Tokenization

module tokenizes the incoming sentences into words or

equivalent units and sends them to the semantic tagger.

Semantic tagger analyzes multiple tokens and where

necessary labels them as number, time, date, text, or

some other category. Each tagged token is then passed

to text generation module which converts the token into

its corresponding text string based on its label. The

flow diagram for Text Processor has been shown in

Figure 2.

Text Processor module in NLP must be able to

convert numbers, symbols, time, date and

miscellaneous strings to text, which can then be

converted to speech by any TTS. This complexity of

Text Processor module has been handled and is

discussed in detail in the following sections.

Figure 2: Text processor module

3.1. Sentence Segmentation

The input string undergoes the process of sentence

segmentation. This module breaks the input string into

sentences - if it encounters a full stop, question mark,

line feed or carriage return character. In addition, if a

sentence is very long, it is segmented at a hard limit of

400 characters (slightly shorter strings are truncated to

adjust word boundaries). The whole input text is first

broken into sentences and then it is sent to other

modules for further processing.

3.2. Conversion to Urdu Zabta Takhti (UZT)

The segmented sentence, initially in Unicode

format, is then converted to UZT format. A conversion

map containing, for each Unicode symbol, a

corresponding UZT symbol is then used to convert this

sentence into the desired format.

This conversion is needed as UZT takes less

number of bytes as compared to Unicode characters.

This makes processing faster and easier. Conversion is

limited to the characters which are available in UZT.

Other characters are ignored at this time, except ASCII

digits, which are mapped onto Urdu digits. This

converted sentence is then passed on to the

tokenization module.

3.3. Tokenization

The tokenization module separates words in the

input string according to space and the punctuation,

including () ' " ! : / ، ؛ - etc. It also contains a few rules

for specific cases, for example, to separate a number

and text joined together like the string 12بجے into

Figure 1: High level architecture diagram

separate tokens; to identify a decimal number between

digits as separately from an end of sentence marker.

However, space is not a reliable cue for

tokenization. According to Naseem et al., 75% of the

errors in Urdu corpus are due to spaces [9]. Therefore,

Akram et al. [10] proposed a statistical technique to

address this issue, based on Urdu ligature and word n-

grams. The current work will be extended to include

this algorithm in the future.

3.4. Semantic Tagger

It is necessary to determine how the tokens are to

be converted to text and read out. For example,

22/10/2010 should be converted to " دو بائیس اکتوبر سن

 Twenty" ,) "ہزار دس

second october year two thousand ten") and not as

) "بائیس سلیش دس سلیش دو ہزار اور دس"
 , "Twenty two slash ten slash

two thousand and ten"). This is done by first marking

"22/10/2010" strings as a single semantic unit and

tagging it as a date, but "22/10" will be tagged as

fractional number. Semantic tagger analyzes the tokens

- tagging them as date, time, numbers (whole numbers,

fractional numbers and decimal numbers), text, special

symbols and miscellaneous strings [6] as shown in

Figure 2. This is done by considering each token

(separated in the tokenization phase) in its context to

see if they can be grouped into larger semantic forms.

Semantic tagger module, initially designed in [6],

has been extended to meet additional requirements for

Urdu TTS. The modules of the semantic tagger are

discussed in more detail below.

3.4.1. Text Processor. Text processor checks the

incoming token and its next tokens (context) to

determine if it's a date or text and then tags it

accordingly. Some of the date formats covered by this

module are ۱۰۰۲جون (June 2001) or ۱۰۲۲جون (June

year 2001) or ء۱۰۰۲جون (June 2001 A.D.) or جون

ء۱۰۲۲ (June year 2001 A.D.) or ۱۰۰۲، ۱۲جون (June 23,

2001) or ۱۰۲۲، ۱۲جون (June 23, year 2001). It covers

both Urdu and English digits and the months of Islamic

and Gregorian calendar. It also recognizes the Arabic

sign Sanah () before the year and Hijri (ھ) or Eeswin

 .symbols after the year in a date (ء)

The text which belongs to categories other than

date and time is considered miscellaneous by this text

processor module.

3.4.2. Number Processor. Number processor handles

both English and Urdu digits in the input string. It

checks the next tokens of the numbers and based on

this, tags them as whole numbers, fractional numbers,

time, date or miscellaneous strings.

Whole numbers are individual digits that appear in

the input string and do not have any context (relevant

next tokens), for example, 12, ۵ etc.

Fractional numbers contain a '/', for example,

12/13, ۱۲/۱۳. Such sequences are tagged as fractional

numbers. Similarly, sequences with additional

constraints of having a ':' instead of a '/' and digits

within hour and minute ranges, for example, 12:03,

۱۲:۰۳ are tagged as time.

For dates, it checks the context and obtains a

single semantic unit. Some of the examples include:

۲۱-۲۱-۱۰۰۲ (12-12-2001) or ۲۱۲۲۱۲۱۰۰۲ (12/12/2001)

or ۲۱ ۱۰۰۲جون)12 June 2001).

 The numbers which do not lie in any of the above

mentioned categories are tagged as miscellaneous

strings.

3.4.3. Decimal Number Processor. As mentioned

previously, tokenization module creates one token for

the decimal number in the input string. Decimal

number processor takes that decimal number as input

and tags it. Examples include ۱۲.۳ or ۱۲.۳ etc.

3.4.4. Special Symbol Processor. It handles symbols

and a date format that starts with a symbol. Symbols

include @, #, $, %, ؓ , ؓ , ؓ , ؓ ,صلى الله عليه وسلم ,جل جلاله , , الله along-with

the Urdu characters like .cte ا ب پ

Date format tagged by this processor starts with an

Arabic sign Sanah (). Examples include: ۲ ۰ ۰ ۱ or

2001 etc.

3.4.5. Miscellaneous String Processor. All the tokens

that contain colon (:), slash (/) or dash (-), in some

combination with numbers or texts, are considered

miscellaneous. These strings do not lie in any of the

above mentioned categories but can appear in the input

text. This processor tags such strings.

3.4.6. Punctuations. Semantic tagger also tags

punctuations in the input string. The punctuations that

are displayed in the output string include ! ۔ ، ؟ ' ؛. This

is because these punctuations affect the speech and

must be there to ensure accurate speech synthesis.

3.5. Text Generation

Tagged tokens are then passed to text generation

module which converts them into their corresponding

UZT text equivalents [6]. String generation has been

divided into several different sub-modules depending

upon the categories as shown in Figure 2. These are

 Number to Text Converter

 Date to Text Converter

 Time to Text Converter

 Special symbol to Text Converter

 Miscellaneous to Text Converter

These modules have been discussed in detail in the

following subsections.

3.5.1. Number to Text Converter. It deals with whole

numbers, decimal numbers and fractional numbers. The

numbers 0 to 99 have their UZT text equivalents

stored, which are referred during conversion. The basic

pronunciations - سو (s , "hundred"), ہزار (z :r,
"thousand"), لاکھ (: ʰ, "Lac"), ارب (ərəb, "million"),

 ʈ , "by - used in) بٹا ,("ʰ b, "billion) کھرب

fractional numbers"), اعشاریہ (ɪj , "decimal

point"), نصف (nɪsf, "half"), تہائی (ɪ :i:, "one third"),

 etc. are also stored for ("h , "one fourth)چوتھائی

future reference.

It reads whole numbers from right to left and

pushes the text equivalent of each number into the

stack. Counter checks the addition of سو (,

"hundred"), ہزار (, "thousand"), لاکھ (ʰ,
"Lac"), ارب (, "million"), کھرب (ʰ , "billion")

and pushes the required pronunciation into the stack as

well. At the end, the stack will have the equivalent

UZT text for the whole number. The example for whole

numbers is shown in Table 1.

Table 1: Whole numbers in NLP

Input Output IPA

Transcription

of Output

English

Translation

 e:k ʰ One lac ایک لاکھ 100000

 e:k ʰ One lac ایک لاکھ ۰۱۱,۰۰۰

بارہ ہزار 12324

سو نیت

سیچوب

 :n

Twelve

thousand

three

hundred

twenty four

آٹھ ہزار نو ۳۳۸۸

سینتیسو ت
 tʰ

n :s

Eight

thousand

nine

hundred

thirty three

 رہیدو لاکھ ت 213901

ہزار نو سو

کیا

 : ʰ

n e:k

Two lac

thirteen

thousand

nine

hundred

one

دو کروڑ 21345320

لاکھ رہیت

 سینتالیپ

سو نیہزار ت

سیب

 : ɽ
 ʰ
pæ: :li:s

 :n
bi:s

Two crore

thirteen lac

forty five

thousand

three

hundred

twenty

Decimal numbers are also read from right to left

until a decimal point is encountered. The numbers after

the decimal point are considered unique, for example,

123 in 12.123 will be converted to ایک دو تین (e:k
 :n, "one two three") instead of ک سو تئیسای (
 :i:s, "one hundred and twenty three"). After their

conversion, decimal point gets its equivalent

pronunciation عشاریہا (ɪj , "decimal point")

whereas rest of the numbers (before the decimal

number) are dealt as whole numbers. Table 2 shows the

examples for decimal number inputs.

Table 2: Decimal numbers in NLP

Input Output IPA

Transcription

of Output

English

Translation

عشاریہ ابارہ 12.02

 دو

 ɪj :
Twelve

point two

عشاریہ اتیرہ ۰۸.۱۱

یک ایکا

 ɪj e:k
e:k

Thirteen

point one

one

Fractional numbers are converted in a same way as

whole numbers except that they have slash (/) between

them which is given its text equivalent بٹا (ʈ , "by -

used in fractions). This converter also recognizes

special fractions with text equivalents different than the

normal fractions. Special fractions include 1/2, 1/3,

1/4, 2/3, 2/4 and 3/4. 1/2 is converted to نصف (ɪsf,
"half") instead of ایک بٹا دو (e:k ʈ , "one by two")

in Urdu. Table 3 shows examples for fractional

numbers.

Table 3:Fractions with special pronunciations

Input Output IPA

Transcription

of Output

English

Translation

 ʰ ʈ Six by ten چھ بٹا دس ۶/۱۰

 e:k ɪ :i: One third ایک تہائی 1/3

The numbers can have both Urdu and English

digits. Moreover, whole numbers can be represented in

the form "100,000". Due to this diversity, it covers 4

formats for whole numbers, 2 for decimal numbers and

2 for fractional numbers.

3.5.2. Date to Text Converter. Date to Text Converter

handles three different types of dates, which are:

 D(D)-M(M)-Y(Y) & D(D)/M(M)/Y(Y)

 D(D) Month-Text Y(Y) & Month-Text D(D),

Y(Y)

 YY(YY)

Here, D(D) is the date, M(M) is the month in

numbers and Y(Y), a year. Month-Text is the month

already in Urdu string.

The D(D) should be in the range 1 to 31 whereas

M(M) in the range of 1 to 12. Years before 2000 have

different corresponding Urdu string as compared to the

years like 2000 or greater than this. For example, 1992

has انوےانیس سو ب (ʊ V , "nineteen ninety

two") as its corresponding text whereas 2002 has دو ہزار

 Date to .("h z r , "two thousand and two) دو

Text converter takes care of these two different formats

of years and gives the output accordingly.

Some formats of dates are shown in Table 2.

Table 4: Date to text converter output

Input Output IPA

Transcription

of Output

English

Translation

بارہ فروری 12-2-2000

 سن دو ہزار

f v
 :

Twelve

February

year two

thousand

بارہ فروری ۲۱/۱/۱۰۰۰ Twelve

 f v سن دو ہزار
 :

February

year two

thousand

 فروری 12

 ء2000

بارہ فروری

سن دو ہزار

 عیسوی

f v
 :
ʔ v

Twelve

February

year two

thousand

A.D.

 ,۲۱ فروری

۱۰۰۰

ہ فروری بار

 سن دو ہزار
f v

 :

February

twelve,

year two

thousand

سن انیس 1992ھ

سو بانوے

 ہجری

 ʊ
 V :
 ɪʤ

Year

nineteen

ninety two

A.H.

ء۱۰۲۲ سن دو ہزار

ایک

 عیسوی

 :
 e:k
ʔ v

Year two

thousand

one A.D.

During text conversion, it also keeps track of

symbols like Arabic Sanah (), Hijri (ھ) and Eeswin

 which can appear with the year in a date. Type 2 (ء)

covers both Islamic and Gregorian calendar months.

Each type for date can be represented with both Urdu

and English digits. They appear with different date

symbols constituting different formats for each date

type.

Type 1 has a total of 24 formats, Type 2 has 108

whereas type 3 consists of 10 different formats.

3.5.3. Time to Text Converter. It converts hours and

minutes in time just as whole numbers whereas ':' in a

time is replaced by بج کر (ʤ , "Used to display

time in Urdu"). It also checks the minutes in the time; if

it shows zero minutes then it only gives the information

about the hours. For example, in case of 10:30, it gives

 ("ʤ :s mɪ ʈ, "ten thirty) دس بج کر تیس منٹ

whereas for 10:00 it just gives دس (, "ten"). This

module covers 6 different formats for time. Table 5

shows the examples for time.

Table 5: Time examples in NLP

Input Output IPA

Transcription

of Output

English

Translation

 p Five پانچ 5:00

چار بج کر ۴:۱: ʤ Four Forty

 mɪ ʈ چالیس منٹ

3.5.4. Special Symbol to Text Converter. Special

symbol to text converter handles 56 different symbols

which are mapped onto its equivalent text by this

converter. The symbols covered by this converter have

already been discussed in Section 3.4.4. Some

examples of special symbols and their conversion are

shown in Table 6.

Table 6: Special symbols in NLP

Input Output IPA

Transcription

of Output

English

Translation

رسول

 اکرم

رسول اکرم

 ہیاللہ عل یصل

 وسلم

rəsu:l

səl ʊ
ʔ æ Vəsələm

Rasool

Akram

salalahu

alehi

wasalam

 æ ʈ At ایٹ @

(Symbol)

 ze: Urdu ز ز

character

 ؐ ہیاللہ عل یصل

 وسلم
səl ʊ

ʔ æ Vəsələm

Arabic

Symbol

 ؐ اللہ عنہ یرض ʊ
ʔ hu:

Arabic

Symbol

 ɖ Dollar ڈالر $

صدیف % Percentage

 Year سن

 fe: Urdu ف ف

character

 ʔ Urdu ع ع

character

3.5.5. Miscellaneous String to Text Converter. (:),

(/) and (-) in miscellaneous strings are converted to

their equivalent texts - کولن (colon), سلیش (slash) and

 respectively. For any text or number that (dash) ڈیش

may be present in the miscellaneous strings undergo

simple conversion of text or number as described in

previous sections. This module covers more than 142

different formats for miscellaneous strings. Some

examples are shown in Table 7.

Table 7: Miscellaneous strings in NLP

Input Output IPA

Transcription

of Output

English

Translation

-۱۰۰۲:جون
۱۰

جون دو

 کیہزار ا

سیب شیڈ

ʤ :
 e:k
dæ bi:s

June two

thousand

one dash

twenty

 شیبارہ ڈ 12-12

 بارہ
 dæ

Twelve

dash

twelve

 شیبارہ ڈ /۰۱-۰۱-۰۱

 شیبارہ ڈ

شیبارہ سل

 dæ
 dæ
 s

Twelve

dash

twelve

dash

twelve

slash

/ جون-جون جون شیسل

جون شیڈ
s ʤ n
dæ ʤ

Slash june

dash june

-جون
2001:20

 شیجون ڈ

دو ہزار

سیب کیا

ʤ dæ
 e:k

bi:s

June dash

two

thousand

one twenty

4. Results

Text Processor module has been tested with some

real data. Data used for the testing purpose is taken

from Urdu newspapers, Urdu typed books, Urdu news

websites and Urdu digest. Sentences are selected from

each of the corpora and given to NLP. Each word is

checked if it has given desired output or not, and the

results are integrated.

The coverage of formats for dates, time and

numbers depends on their frequency in the real data.

Time and decimal numbers have fewer occurrences in

the given corpora as compared to dates, whole numbers

and symbols.

In the testing process, 13297 words are covered,

which along-with text strings; contain numbers,

symbols, and miscellaneous strings. Decimal numbers

and time, found in the testing data have 100%

accuracy. Accuracies for whole numbers, dates and

miscellaneous strings are 99%, 91% and 93%

respectively. Accuracy for symbols is reduced to 50%.

 s s ec use or l t o o s ols l e etc.

is not correct and it does not give its full equivalent

string, thus reducing the accuracy. Here, accuracy

determines the correctness of conversion of input string

to its Urdu format. Table 8 tabulates the results.

Table 8: Results

 Total

Tokens

Correctly

Identified

%age

accuracy

Whole

Numbers

271 267 99%

Dates 92 84 91%

Miscellaneous

Numbers

40 37 93%

Symbols 62 31 50%

Time 5 5 100%

Decimal No. 16 16 100%

Majority modules show accuracy above 90%, as it

can be seen in Table 8. Issues encountered during

testing phase have been discussed in Section 5.

5. Discussion

The results given in Table 8 show sufficient

accuracy of NLP text processing module but there are

some issues that need to be resolved.

Space issues in the test data and invalid Unicode

code points resulted in inappropriate conversion of

whole numbers. For example, ۲؎لفظ shows no spaces

between them, thus resulting in wrong interpretation of

the whole number present in the given example. Some

of the numbers in the test data contained invalid

Unicode code points (not belonging to Urdu) which

were not recognized by NLP thereby, giving incorrect

results.

Similarly, some dates were not recognized because of

space issues. In ۹ ءبس۱۰۰۲اکتوبر , there is no space

between ' ء ' and " بس " due to which it was unable to

recognize the proper date format. At another point, the

date of format ۱۰۰۲، ۱۲اگست was not identified

because English comma ',' was used instead of Urdu

comma '،'. Some of the other dates were used with

miscellaneous characters due to which they were

tagged as miscellaneous strings. For example, 1999 -

 ء. 2000

Symbols showing 50% accuracy are a major

co cer o . e s ols , , etc. were not

recognized properly during the testing phase. NLP

could not generate the whole text equivalent for these

symbols which reduced the overall accuracy of this

module. For example, for it gave رضی (ɪ, "Arabic

symbol") only instead of اللہ عنہ یرض (ʊ
ʔ , “Ar c s ol”).

Moreover, there were some errors related to

tokenization and sentence segmentation. Tokenization

errors occurred due to typing errors and space issues in

the input file. Sentence segmentation errors resulted

because some of the sentences consisted of more than

400 characters and as described in section 3.1, NLP

segments the sentence if characters in a sentence are

more than 400. This resulted in inappropriate sentence

segmentation.

6. Conclusion

This paper has discussed various steps in detail,

needed for converting raw text string into normalized

Urdu string. Raw input may consist of numbers, date,

time or symbols that must be normalized using text

processing module before sending it to TTS system for

speech generation. The overall accuracy for text

processing module is 90.5%, which is a quite

acceptable number. However, this is a work in progress

and some future goals are yet to be achieved. Future

goals include refining NLP output and handling more

formats for each sub-module depending upon the

requirements.

7. Acknowledgement

This work has been conducted through the project,

Enabling Information Access for Mobile based Urdu

Dialogue Systems and Screen Readers supported

through a research grant from ICTRnD Fund, Pakistan.

8. References

[1] Hussain S., "Phonological Processing for Urdu Text to

Speech System."Yadava, Y, Bhattarai, G, Lohani, RR,

Prasain, B and Parajuli, K (eds.) Contemporary issues in

Nepalese linguistics, 2005.

[2] Ungurean C., and Burileanu D., "An advanced NLP

framework for high-quality Text-to-Speech synthesis."

In Speech Technology and Human-Computer Dialogue

(SpeD). IEEE, 2011.

[3] Trilla A,. "Natural Language Processing techniques in

Text-To-Speech synthesis and Automatic Speech

Recognition.", 2009.

[4] Bhatt S., "Natural Language Processing with Text-to-

Speech on Android", May 2011.

[5] Ramakrishnan A. G., Kaushil L. N., and Narayana. L.,

“ tur l gu ge rocess g or l S.” in Proc. of

the 3rd Language and Technology Conference, Poznan,

Poland, 2007.

[6] Hussain S., "Urdu localization project: Lexicon, MT and

TTS (ULP)." in Proc. of the Workshop on Computational

Approaches to Arabic Script-based Languages, Association

for Computational Linguistics, 2004.

[7] Hussain S., "Letter-to-sound conversion for Urdu text-to-

speech system." in Proc. of the Workshop on Computational

Approaches to Arabic Script-based Languages, Association

for Computational Linguistics, 2004.

[8] Hussain S., and Afzal M., "Urdu computing standards:

Urdu zabta takhti (uzt) 1.01." In Multi Topic Conference,

INMIC 2001. Technology for the 21st Century. Proceedings.

IEEE International, IEEE, 2001.

[9] Naseem, T., and Hussain, S., "Spelling Error Trends in

Urdu." in Proc. of Conference on Language Technology

(CLT07), University of Peshawar, Pakistan, 2007

[10] Akram M., and Hussain S., "Word segmentation for

urdu OCR system." in Proc. of the 8th Workshop on Asian

Language Resources, Beijing, China, 2010.

